POINT LOCATION
IN PLANAR SUBDIVISIONS

Vera Sacristán

Computational Geometry
Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya
Introduction
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size \(n \), decide in which region of the decomposition is located a given point \(p \).

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem
Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Applications
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem
Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem
Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem
Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

Particular cases
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

General case
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size \(n \), decide in which region of the decomposition is located a given point \(p \).

General case
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

General case

Strategy
The problem

Given a planar subdivision defined by a planar and rectilinear graph of size n, decide in which region of the decomposition is located a given point p.

General case

Strategy

Adequately preprocess the planar decomposition, so that point locations can be efficiently performed.
Slab decomposition
Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.
Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.
Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.
Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.

Location

Given a point q:

1. Locate the abscissa of q in the corresponding slab.
2. Within the slab, locate the two segments between which q lies.
POINT LOCATION: Slab decomposition

Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.

Location

Given a point q:

1. Locate the abscissa of q in the corresponding slab.

2. Within the slab, locate the two segments between which q lies.
Preprocessing

Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.

Location

Given a point q:

1. Locate the abscissa of q in the corresponding slab.
2. Within the slab, locate the two segments between which q lies.
POINT LOCATION: Slab decomposition

Preprocessing
Decompose the plane into the slabs determined by all vertical lines through the vertices of the original decomposition.

Location
Given a point q:

1. Locate the abscissa of q in the corresponding slab.
2. Within the slab, locate the two segments between which q lies.

The preprocessing should:

- Store the abscissae of the slabs in a structure allowing binary searching.
- Store the segments intersecting each slab in a structure allowing binary searching.
- For each segment of the initial decomposition, store a pointer to the face above (or below) it.

In this way, it will be possible to perform each point location in $O(\log n)$ time.
Preprocessing

It can be done by sweeping the planar decomposition with a vertical line:

Event queue: the vertices of the decomposition, sorted by their abscissae.

Sweep line status: the line-segments of the decomposition stabbed by the line, in order.

Action at each event:

1. In the sweep line:
 - Insert vertex: insert the incident edges in the sweep line, in counterclockwise order.
 - Delete vertex: delete the incident edges from the sweep line.
 - Update vertex: delete the edges incident to the left and insert the edges incident to the right, in sorted order.

2. In the slab decomposition:
 - Store the line-segments of the new slab in order.
Complexity
POINT LOCATION: Slab decomposition

Complexity
Complexity

Some planar decompositions have a quadratic slab decomposition:

In this example, if the total number of vertices is $2n + 1$, the total number of regions of the slab decomposition is

$$3 + (2n + 1) + 2 \sum_{i=1}^{n-1} (2i + 1) \geq 2 \sum_{i=1}^{n-1} 2i =$$

$$= 4 \sum_{i=1}^{n-1} i = 4 \frac{n(n-1)}{2} = O(n^2).$$
Complexity

Some planar decompositions have a quadratic slab decomposition:

In this example, if the total number of vertices is $2n + 1$, the total number of regions of the slab decomposition is

$$3 + (2n + 1) + 2 \sum_{i=1}^{n-1} (2i + 1) \geq 2 \sum_{i=1}^{n-1} 2i = 4 \sum_{i=1}^{n-1} i = 4 \frac{n(n-1)}{2} = O(n^2).$$

Space: the space needed to store the information is $O(n^2)$.
Preprocessing: the preprocessing is done in $O(n^2)$ time.
Location: locating of a point is done in $O(\log n)$ time.
Monotone subdivision
This method is based on the following observation: if C is an x-monotone chain with n vertices, deciding whether a point q lies above or below C can be done in $O(\log n)$ time.

1. Locate the abscissa q_x of q between the abscissae x_i and x_{i+1} of two consecutive vertices of C, by binary search.

2. Decide whether q lies above or below the line-segment p_ip_{i+1} of C.
This method is based on the following observation: if C is an x-monotone chain with n vertices, deciding whether a point q lies above or below C can be done in $O(\log n)$ time.

1. Locate the abscissa q_x of q between the abscissae x_i and x_{i+1} of two consecutive vertices of C, by binary search.

2. Decide whether q lies above or below the line-segment p_ip_{i+1} of C.
This method is based on the following observation: if C is an x-monotone chain with n vertices, deciding whether a point q lies above or below C can be done in $O(\log n)$ time.

1. Locate the abscissa q_x of q between the abscissae x_i and x_{i+1} of two consecutive vertices of C, by binary search.

2. Decide whether q lies above or below the line-segment p_ip_{i+1} of C.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
This method is based on the following observation: if C is an x-monotone chain with n vertices, deciding whether a point q lies above or below C can be done in $O(\log n)$ time.

1. Locate the abscissa q_x of q between the abscissae x_i and x_{i+1} of two consecutive vertices of C, by binary search.

2. Decide whether q lies above or below the line-segment p_ip_{i+1} of C.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
This method is based on the following observation: if C is an x-monotone chain with n vertices, deciding whether a point q lies above or below C can be done in $O(\log n)$ time.

1. Locate the abscissa q_x of q between the abscissae x_i and x_{i+1} of two consecutive vertices of C, by binary search.

2. Decide whether q lies above or below the line-segment p_ip_{i+1} of C.
Preprocessing

Compute C, a complete set of x-monotone chains for the planar decomposition:

- The union of the chains of C contains the 1-skeleton of the decomposition.
- If C_i and C_j are two chains of C, all the vertices of C_i which do not belong to C_j lie to the same side of C_j. This implies that C is a totally ordered set.

Therefore, if C contains r chains, and the largest of the chains has k vertices, it is possible to locate a point between two consecutive chains in $O(\log r \log k)$ time by binary search.
Preprocessing

Compute C, a complete set of x-monotone chains for the planar decomposition:

- The union of the chains of C contains the 1-skeleton of the decomposition.
- If C_i and C_j are two chains of C, all the vertices of C_i which do not belong to C_j lie to the same side of C_j. This implies that C is a totally ordered set.

Therefore, if C contains r chains, and the largest of the chains has k vertices, it is possible to locate a point between two consecutive chains in $O(\log r \log k)$ time by binary search.
Preprocessing

Compute C, a complete set of x-monotone chains for the planar decomposition:

- The union of the chains of C contains the 1-skeleton of the decomposition.
- If C_i and C_j are two chains of C, all the vertices of C_i which do not belong to C_j lie to the same side of C_j. This implies that C is a totally ordered set.

Therefore, if C contains r chains, and the largest of the chains has k vertices, it is possible to locate a point between two consecutive chains in $O(\log r \log k)$ time by binary search.
Conditions

For a planar decomposition to admit a complete set of x-monotone chains, the graph G is required to be regular:

- Consider the vertices v_1, v_2, \ldots, v_n of G to be lexicographically sorted:

 $$i < j \iff x(v_i) < x(v_j) \text{ or } (x(v_i) = x(v_j) \text{ and } y(v_i) < y(v_j)).$$

- A vertex v_i is regular if $\exists j, k$ with $j < i < k$ such that v_jv_i and v_iv_k are edges of G.

- The graph G is regular if all its vertices, other than v_1 and v_n, are regular.
Conditions

For a planar decomposition to admit a complete set of x-monotone chains, the graph G is required to be regular:

- Consider the vertices v_1, v_2, \ldots, v_n of G to be lexicographically sorted:

 $$i < j \iff x(v_i) < x(v_j) \text{ or } (x(v_i) = x(v_j) \text{ and } y(v_i) < y(v_j)).$$

- A vertex v_i is regular if $\exists j, k$ with $j < i < k$ such that v_jv_i and v_iv_k are edges of G.

- The graph G is regular if all its vertices, other than v_1 and v_n, are regular.
Theorem

If G is a regular graph, then it admits a complete set of x-monotone chains.
Theorem

If G is a regular graph, then it admits a complete set of x-monotone chains.

Proof:

1. By induction, we will prove that it is possible to compute an x-monotone chain from v_1 to v_i for all i:

 - For $i = 2$ the result is trivial, because $\exists j < 2$ such that v_jv_2 is an edge of G.
 - Assume the result true for all $j < i$. Due to the regularity of v_i, $\exists j < i$ such that v_jv_i is an edge of G. By induction hypothesis, there exists an x-monotone chain C' from v_1 to v_j. The concatenation of C' and x_jx_i is x-monotone.

2. In the following, we will prove that it is possible to build a complete set C of x-monotone chains.
Theorem

Notation:

- \(\text{in}(v_i) = \{ \text{edges } v_jv_i \text{ of } G \text{ with } j < i \} \).
- \(\text{out}(v_i) = \{ \text{edges } v_i v_k \text{ of } G \text{ with } i < k \} \).
- \(w(e) = \text{weight of edge } e = \text{number of chains of } C \text{ in which } e \text{ appears.} \)
- \(w_{in}(v) = \text{incoming weight of vertex } v = \sum_{e \in \text{in}(v)} w(e) \).
- \(w_{out}(v) = \text{outgoing weight of vertex } v = \sum_{e \in \text{out}(v)} w(e) \).
Theorem

Notation:

- \(in(v_i) = \{ \text{edges } \overrightarrow{jv_i} \text{ of } G \text{ with } j < i \} \).
- \(out(v_i) = \{ \text{edges } \overrightarrow{i v_k} \text{ of } G \text{ with } i < k \} \).
- \(w(e) = \text{weight of edge } e = \text{number of chains of } C \text{ in which } e \text{ appears.} \)
- \(w_{in}(v) = \text{incoming weight of vertex } v = \sum_{e \in in(v)} w(e) \).
- \(w_{out}(v) = \text{outgoing weight of vertex } v = \sum_{e \in out(v)} w(e) \).

It can be proved:

- \(\forall e \quad w(e) > 0 \).

 This implies that the union of the chains of \(C \) contains the 1-skeleton of \(G \).

- \(\forall i \neq 1, n \quad w_{in}(v_i) = w_{out}(v_i) \).

 This implies that \(C \) can be constructed so that it is a totally ordered set.
Theorem

Weight assignment:
Theorem

Weight assignment:

1. *Initialization*

 Assign weight 1 to all edges
Theorem

Weight assignment:

1. **Initialization**
 Assign weight 1 to all edges

2. **First sweep (forwards)**
 From $i = 2$ to $i = n - 1$ do:
 If $w_{\text{in}}(v_i) > w_{\text{out}}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{\text{in}}(v_i) - w_{\text{out}}(v_i) + 1$.
Theorem

Weight assignment:

1. *Initialization*
 Assign weight 1 to all edges

2. *First sweep (forwards)*
 From $i = 2$ to $i = n - 1$ do:
 If $w_{in}(v_i) > w_{out}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{in}(v_i) - w_{out}(v_i) + 1$.
Theorem

Weight assignment:

1. **Initialization**

 Assign weight 1 to all edges

2. **First sweep (forwards)**

 From $i = 2$ to $i = n - 1$ do:

 If $w_{in}(v_i) > w_{out}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{in}(v_i) - w_{out}(v_i) + 1$.

3. **Second sweep (backwards)**

 From $i = n - 1$ to $i = 2$ do:

 If $w_{out}(v_i) > w_{in}(v_i)$, replace the weight $w(e)$ of the (counterclockwise) first ingoing edge of v_i by the weight $w_{out}(v_i) - w_{in}(v_i) + w(e)$.
Theorem

Weight assignment:

1. **Initialization**
 Assign weight 1 to all edges

2. **First sweep (forwards)**
 From $i = 2$ to $i = n - 1$ do:
 If $w_{in}(v_i) > w_{out}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{in}(v_i) - w_{out}(v_i) + 1$.

3. **Second sweep (backwards)**
 From $i = n - 1$ to $i = 2$ do:
 If $w_{out}(v_i) > w_{in}(v_i)$, replace the weight $w(e)$ of the (counterclockwise) first ingoing edge of v_i by the weight $w_{out}(v_i) - w_{in}(v_i) + w(e)$.
Theorem

Weight assignment:

1. **Initialization**

 Assign weight 1 to all edges

2. **First sweep (forwards)**

 From $i = 2$ to $i = n - 1$ do:

 If $w_{in}(v_i) > w_{out}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{in}(v_i) - w_{out}(v_i) + 1$.

3. **Second sweep (backwards)**

 From $i = n - 1$ to $i = 2$ do:

 If $w_{out}(v_i) > w_{in}(v_i)$, replace the weight $w(e)$ of the (counterclockwise) first ingoing edge of v_i by the weight $w_{out}(v_i) - w_{in}(v_i) + w(e)$.
Theorem

Weight assignment:

1. **Initialization**
 Assign weight 1 to all edges

2. **First sweep (forwards)**
 From $i = 2$ to $i = n - 1$ do:

 If $w_{in}(v_i) > w_{out}(v_i)$, replace the weight 1 of the (counterclockwise) first outgoing edge of v_i by the weight $w_{in}(v_i) - w_{out}(v_i) + 1$.

3. **Second sweep (backwards)**
 From $i = n - 1$ to $i = 2$ do:

 If $w_{out}(v_i) > w_{in}(v_i)$, replace the weight $w(e)$ of the (counterclockwise) first incoming edge of v_i by the weight $w_{out}(v_i) - w_{in}(v_i) + w(e)$.
Theorem

Computing the chains:

- All chains start at \(v_1 \) and end at \(v_n \).
- Each time an edge \(e \) is used to build a chain, its weight \(w(e) \) is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem

Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem

Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem

Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem

Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem
Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Theorem

Computing the chains:

- All chains start at v_1 and end at v_n.
- Each time an edge e is used to build a chain, its weight $w(e)$ is decreased by one.
- During the construction, always leave vertices through the (counterclockwise) first edge having positive weight.
Complexity
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.

There exist graphs with $n/2$ chains, each one having $n/2$ vertices:
Complexity

Space: The complete set of chains occupies $O(n)$ space.

There exist graphs with $n/2$ chains, each one having $n/2$ vertices:
Complexity

Space: The complete set of chains occupies $O(n)$ space.

There exist graphs with $n/2$ chains, each one having $n/2$ vertices:

This seems to mean that information of size $O(n^2)$ should be stored, but this is redundant: the graph can be stored in $O(n)$ space, based on the following observation:
Complexity

Space: The complete set of chains occupies $O(n)$ space.

There exist graphs with $n/2$ chains, each one having $n/2$ vertices:

This seems to mean that information of size $O(n^2)$ should be stored, but this is redundant: the graph can be stored in $O(n)$ space, based on the following observation:

When an edge e belongs to several chains, it belongs to an interval of consecutive chains (chains are totally ordered). Store e in the ascendant of the entire interval of chains in the search structure C. It is in that chain where e will be used in the search algorithm. For each remaining chain of the interval, the edge e is replaced by a bypass pointer.

The number of pointers is not quadratic, but linear, because each pointer points to one single edge of G, and each edge gets at most one single pointer.
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.
Complexity

Space: The complete set of chains occupy $O(n)$ space.
Complexity

Space: The complete set of chains occupies $O(n)$ space.

Preprocessing: If the graph is regular, the preprocessing can be performed in $O(n)$ time from the DCEL of G, assuming that the vertices of G are sorted by abscissa. Otherwise, sorting the vertices is necessary as first step, requiring $O(n \log n)$ time.
Complexity

Space: The complete set of chains occupies $O(n)$ space.

Preprocessing: If the graph is regular, the preprocessing can be performed in $O(n)$ time from the DCEL of G, assuming that the vertices of G are sorted by abscissa. Otherwise, sorting the vertices is necessary as first step, requiring $O(n \log n)$ time.

Location: Locating can be done in $O(\log^2 n)$ time.

We have already observed that the search running time is $O(\log r \log k)$, where r is the number of chains and k is the maximum number of vertices of the chains. The following example shows $r, k \in O(\sqrt{n})$, so that $O(\log r \log k) = O(\log^2 \sqrt{n}) = O(\log^2 n)$:
Complexity

Space: The complete set of chains occupies $O(n)$ space.

Preprocessing: If the graph is regular, the preprocessing can be performed in $O(n)$ time from the DCEL of G, assuming that the vertices of G are sorted by abscissa. Otherwise, sorting the vertices is necessary as first step, requiring $O(n \log n)$ time.

Location: Locating can be done in $O(\log^2 n)$ time.

We have already observed that the search running time is $O(\log r \log k)$, where r is the number of chains and k is the maximum number of vertices of the chains. The following example shows $r, k \in O(\sqrt{n})$, so that $O(\log r \log k) = O(\log^2 \sqrt{n}) = O(\log^2 n)$:
Complexity

Space: The complete set of chains occupies $O(n)$ space.

Preprocessing: If the graph is regular, the preprocessing can be performed in $O(n)$ time from the DCEL of G, assuming that the vertices of G are sorted by abscissa. Otherwise, sorting the vertices is necessary as first step, requiring $O(n \log n)$ time.

Location: Locating can be done in $O(\log^2 n)$ time.

We have already observed that the search running time is $O(\log r \log k)$, where r is the number of chains and k is the maximum number of vertices of the chains. The following example shows $r, k \in O(\sqrt{n})$, so that $O(\log r \log k) = O(\log^2 \sqrt{n}) = O(\log^2 n)$:

In fact, the running time of the location step can be decreased by taking into account the following observation: when testing a point q wrt a chain C, the algorithm ends testing q wrt some particular edge e. At the following step, this information can be used to avoid locating q along the entire chain when, in fact, only a portion of the chain matters.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time. Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Extension to non-regular graphs

Every non-regular graph can be regularized in $O(n \log n)$ time.

Let $v \neq v_1$ be a vertex without any incoming edge (the case of a vertex without outgoing edges is analogous).

Since $v \neq v_1$, the vertical line through v intersects at least one, if not two, edges of G, e_i and e_j, adjacent to v. Let v_i and v_j respectively be their left endpoints. Connect v with the rightmost vertex among those lying in the trapezoid limited by e_i, e_j, and the vertical lines through v and through the rightmost vertex among v_i and v_j. The resulting line-segment does not intersect any edge of G; inserting it in G regularizes vertex v.

G can be regularized by sweeping it twice: once from left to right to regularize all vertices without incoming edges, once from right to left to regularize all vertices without outgoing edges.

The resulting algorithm runs in $O(n \log n)$ time.
Trapezoidal refinement
This method is a variation of the slab decomposition.

It is a refinement method (based on a hierarchy of trapezoidal decompositions).

It can be applied to any planar decomposition.
This method is a variation of the slab decomposition.

It is a refinement method (based on a hierarchy of trapezoidal decompositions).

It can be applied to any planar decomposition

Trapezoid characteristics

The trapezoids used in this method have the following characteristics:

- Their vertical edges are line-segments or half-lines through vertices of the initial decomposition.

- The other edges of the trapezoid are edges or portions of edges of the initial graph.

- No edge of the initial graph simultaneously intersects both vertical edges of a trapezoid.
Refinement

Given a trapezoid T:

![Diagram of a trapezoidal refinement](image-url)
Refinement

Given a trapezoid T:

1. Consider the vertical line through the vertex of median abscissa among all vertices in T.
Refinement

Given a trapezoid T:

1. Consider the vertical line through the vertex of median abscissa among all vertices in T.

2. Decompose T into two strips, T_1 and T_2, left and right of the line.
Refinement

Given a trapezoid T:

1. Consider the vertical line through the vertex of median abscissa among all vertices in T.

2. Decompose T into two strips, T_1 and T_2, left and right of the line.

3. If T_1 and T_2 are legal trapezoids, no further action is needed.
Refinement

Given a trapezoid T:

1. Consider the vertical line through the vertex of median abscissa among all vertices in T.

2. Decompose T into two strips, T_1 and T_2, left and right of the line.

3. If T_1 and T_2 are legal trapezoids, no further action is needed.

4. For each edge completely traversing T_1 (respectively T_2) -recall that no edge can traverse both-, decompose T_1 (T_2) into two pieces, one above and one below the edge.
Search structure
Search structure
POINT LOCATION: Trapezoidal refinement

Search structure

\[T \]

\[x_m \]

above below above below

\[T_3 \] \[T_4 \] \[T_5 \] \[T_6 \] \[T_7 \]

Trapezoidal refinement
Complexity

Space: the space used to store the hierarchy of trapezoidal decompositions is $O(n \log n)$:

- There is a triangular node for each vertex of the initial graph.
- There is a circular node for each “piece” of an edge of the initial graph.
- There is a leaf for each trapezoid free of vertices in its interior.

It can be proved that this hierarchy cannot produce more than $O(n \log n)$ overall trapezoids.

Preprocessing: computing the refinement of the trapezoids is done in $O(n \log n)$ time.

Location: locating a point is done in $O(\log n)$ time.
Triangulation refinement: Kirkpatrick’s algorithm
This is a method for point location in triangulations, although it can be extended to more general decompositions. It is based on a refinement process of the triangulation, and it requires the exterior face of the triangulation to be triangular.
This is a method for point location in triangulations, although it can be extended to more general decompositions. It is based on a refinement process of the triangulation, and it requires the exterior face of the triangulation to be triangular.

Input

A triangulation T, whose exterior face is a triangle.
This is a method for point location in triangulations, although it can be extended to more general decompositions. It is based on a refinement process of the triangulation, and it requires the exterior face of the triangulation to be triangular.

Input

A triangulation T, whose exterior face is a triangle.

Preprocessing

Create a hierarchy of triangulations S_0, S_1, \ldots, S_h such that:

- $S_0 = T$
- S_i is obtained from S_{i-1} as follows:
 1. Delete a set of independent vertices not belonging to the boundary of the convex hull, as well as all their incident edges.
 2. Retriangulate the resulting polygons.
- S_h is the enclosing triangle
This is a method for point location in triangulations, although it can be extended to more general decompositions. It is based on a refinement process of the triangulation, and it requires the exterior face of the triangulation to be triangular.

Input

A triangulation T, whose exterior face is a triangle.

Preprocessing

Create a hierarchy of triangulations S_0, S_1, \ldots, S_h such that:

- $S_0 = T$
- S_i is obtained from S_{i-1} as follows:
 1. Delete a set of independent vertices not belonging to the boundary of the convex hull, as well as all their incident edges.
 2. Retriangulate the resulting polygons.
- S_h is the enclosing triangle

No two vertices are adjacent.
Preprocessing

S_0
Preprocessing
Preprocessing
Preprocessing
Preprocessing
Preprocessing

POINT LOCATION: Triangulation refinement

S_1
Preprocessing
Preprocessing
Preprocessing

S_2
POINT LOCATION: Triangulation refinement

Preprocessing

S_2
POINT LOCATION: Triangulation refinement

Preprocessing

S_3
Preprocessing

The search structure to be build is a directed tree:

- The vertices of the tree are the triangles of the hierarchy of triangulations.
- There exists an edge from triangle T_k to triangle T_j if, when computing S_i from S_{i-1}:
 - T_j is deleted from S_{i-1} in step 1.
 - T_k is created in S_i in step 2.
 - $T_k \cap T_j \neq \emptyset$.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Preprocessing

POINT LOCATION: Triangulation refinement
POINT LOCATION: Triangulation refinement

Preprocessing

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
POINT LOCATION: Triangulation refinement

Preprocessing

S_1

S_2

S_3

S_0

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
POINT LOCATION: Triangulation refinement

Preprocessing

\[S_1 \]

\[S_2 \]

\[S_3 \]

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Point Location: Triangulation refinement

Preprocessing
POINT LOCATION: Triangulation refinement

Preprocessing

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
POINT LOCATION: Triangulation refinement

Preprocessing

S_1 S_2 S_3

S_0

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Preprocessing
POINT LOCATION: Triangulation refinement

Preprocessing

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.

Proof:

The final number of vertices is $3 = n(1 - c)^h$, therefore $h = \frac{\log n - \log 3}{\log(1-c)} = O(\log n)$.

Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.

\textit{Proof:}

The final number of vertices is $3 = n(1 - c)^h$, therefore $h = \frac{\log n - \log 3}{-\log(1-c)} = O(\log n)$.

How to make the number of chosen independent vertices to always be a constant fraction?
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.

Proof:
The final number of vertices is $3 = n(1 - c)^h$, therefore $h = \frac{\log n - \log 3}{\log(1 - c)} = O(\log n)$.

How to make the number of chosen independent vertices to always be a constant fraction?

Choosing in a greedy way all possible vertices of degree ≤ 8 (as long as they stay independent), allows eliminating at each step at least $n/18$ vertices.
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.

Proof:
The final number of vertices is $3 = n(1-c)^h$, therefore $h = \frac{\log n - \log 3}{\log(1-c)} = O(\log n)$.

How to make the number of chosen independent vertices to always be a constant fraction?

Choosing in a *greedy* way all possible vertices of degree ≤ 8 (as long as they stay independent), allows eliminating at each step at least $n/18$ vertices.

Order does not matter: choose one, label all its neighbors as being not independent, choose a second one, ...
Preprocessing

How to make the height of the search tree to be $h = O(\log n)$?

If, at each step, the number of vertices in the independent set is a constant fraction cn of the current number of vertices ($0 < c < 1$), then $h = O(\log n)$.

Proof:
The final number of vertices is $3 = n(1 - c)^h$, therefore $h = \frac{\log n - \log 3}{-\log(1-c)} = O(\log n)$.

How to make the number of chosen independent vertices to always be a constant fraction?

Choosing in a greedy way all possible vertices of degree ≤ 8 (as long as they stay independent), allows eliminating at each step at least $n/18$ vertices.

Proof:
1. There exist at least $n/2$ vertices of order ≤ 8. Otherwise, if more than half of the vertices had degree ≥ 9, then \sum degrees $\geq 9\frac{n}{2} + 3(\frac{n}{2} - h) + 2h = 6n - 3$, and this cannot happen since \sum degrees $= 2e = 2(3n - h - 3) = 6n - 12$.

2. Each time a vertex of degree ≤ 8 is chosen, all its neighbors (at most 8 vertices) must be discarded. In the worst case, all of them will also be of degree ≤ 8, and the process will be choosing $1/9$ of the vertices of degree ≤ 8. As there are $n/2$ such vertices, the minimum number of independent vertices is $n/18$.
Complexity

Space: the space used to store the hierarchy of triangulations is $O(n)$:

- The total number of triangles is $O(n) + O((1 - c)n) + O((1 - c)^2n) + \cdots = O(n)$.
- The number of pointers leaving a triangle is less or equal to the number of triangles that appear when retriangulating a hole of constant size ≤ 8.

Preprocessing: computing the refinement of triangulations is done in $O(n)$ time, since at each step the algorithm:

- Finds the independent vertices (exploring all current vertices).
- Retriangulates a linear amount of holes, each of size $O(1)$.

Hence, the overall task is done in time $O(n) + O((1 - c)n) + O((1 - c)^2n) + \cdots = O(n)$.

Location: locating a point is done in $O(\log n)$ time, since the height of the search tree is $h = O(\log n)$.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Extension to arbitrary graphs

When the planar decomposition is not a triangulation but an arbitrary graph:

1. Enclose the graph in a triangle.
2. Triangulate all the resulting non triangular regions.
Extension to arbitrary graphs

When the planar decomposition is not a triangulation but an arbitrary graph:

1. Enclose the graph in a triangle.
2. Triangulate all the resulting non triangular regions.

This adds $O(n \log n)$ running time to the preprocessing step (except if the polygons are triangulated with Chazelle’s linear algorithm).
Extension to Voronoi diagrams

The Voronoi diagram is not a proper planar decomposition, since some of its edges are half-lines.
Extension to Voronoi diagrams

The Voronoi diagram is not a proper planar decomposition, since some of its edges are half-lines.

Preprocessing

1. Consider a triangle enclosing all Voronoi vertices.
2. Clip each half-line with the boundary of the enclosing triangle.
3. Triangulate all the regions.

 This can be done in $O(n)$ time.

Search

When a point lies in the exterior of the enclosing triangle, the algorithm must detect its relative position with respect to the half-lines. This can be done in $O(\log n)$ time (with the appropriate data structure), since the half-lines are sorted.
Trapezoidal map
This is a randomized method, very convenient in practice.

It consists in a variation of the slab method:

1. Compute a rectangle enclosing the 1-skeleton of the graph G.

2. From each vertex of G, shoot two vertical rays, upwards and downwards, until they reach an edge (of the graph or of the enclosing rectangle).
This is a randomized method, very convenient in practice.

It consists in a variation of the slab method:

1. Compute a rectangle enclosing the 1-skeleton of the graph G.

2. From each vertex of G, shoot two vertical rays, upwards and downwards, until they reach an edge (of the graph or of the enclosing rectangle).
This is a randomized method, very convenient in practice.

It consists in a variation of the slab method:

1. Compute a rectangle enclosing the 1-skeleton of the graph G.

2. From each vertex of G, shoot two vertical rays, upwards and downwards, until they reach an edge (of the graph or of the enclosing rectangle).
Complexity

The total number of resulting trapezoids is linear: for each vertex of G, at most two new edges and two new vertices are added.
Complexity

The total number of resulting trapezoids is linear: for each vertex of G, at most two new edges and two new vertices are added.

If the line-segments of the initial decomposition G are processed in random order:

Space: The appropriate search structure has expected size $O(n)$.

Preprocessing: The expected running time for computing the trapezoids and building the search structure is $O(n \log n)$.

Location: Given a point q of the plane, the region where it is located is found in $O(\log n)$ expected running time.
POINT LOCATION: Trapezoidal map

Complexity

The total number of resulting trapezoids is linear: for each vertex of G, at most two new edges and two new vertices are added.

If the line-segments of the initial decomposition G are processed in random order:

Space: The appropriate search structure has expected size $O(n)$.

Preprocessing: The expected running time for computing the trapezoids and building the search structure is $O(n \log n)$.

Location: Given a point q of the plane, the region where it is located is found in $O(\log n)$ expected running time.
Walking in a triangulation
This method is used for locating points in triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Rectilinear walk

The algorithm visits all the triangles intersected by the line-segment pq.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Orthogonal walk

The algorithm visits all the triangles intersected by an isothetic path from p to q, increasing first one coordinate then the other one.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Orthogonal walk

The algorithm visits all the triangles intersected by an isothetic path from p to q, increasing first one coordinate then the other one.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Orthogonal walk

The algorithm visits all the triangles intersected by an isothetic path from p to q, increasing first one coordinate then the other one.
POINT LOCATION: Walking in a triangulation

This method is used for locating points in triangulations.

It finds out in which triangle a new point \(p \) lies, starting from a known vertex \(q \) of the triangulation.

Orthogonal walk

The algorithm visits all the triangles intersected by an isothetic path from \(p \) to \(q \), increasing first one coordinate then the other one.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
POINT LOCATION: Walking in a triangulation

This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Visibility walk

It consists on visiting adjacent triangles, crossing edges for which p and q lie in opposite sides.
This method is used for locating points in triangulations.

It finds out in which triangle a new point \(p \) lies, starting from a known vertex \(q \) of the triangulation.

Correction

- Rectilinear walk: obvious.

- Orthogonal walk: obvious.

- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point \(p \) lies, starting from a known vertex \(q \) of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
POINT LOCATION: Walking in a triangulation

This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations. It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.
POINT LOCATION: Walking in a triangulation

This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Correction

- Rectilinear walk: obvious.
- Orthogonal walk: obvious.
- Visibility walk: works fine for Delaunay triangulations, but not for arbitrary triangulations.

This problem can be solved by randomizing the selection of the first edge to be tested on each triangle.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Advantages and disadvantages

- On average, rectilinear walks explore a smaller number of triangles.
- Orthogonal walks have the advantage that almost each test is in dimension 1. This is specially interesting when working in higher dimension.
- Visibility walks are easier to implement, because no degenerate positions need to be taken into account, as opposed to rectilinear walks, which require solving the case of the line-segment pq containing a vertex of the triangulation.
- Deterministic visibility walks cannot be applied to arbitrary triangulations if they are not Delaunay.
- All three walks can be generalized to higher dimension.
This method is used for locating points in triangulations.

It finds out in which triangle a new point p lies, starting from a known vertex q of the triangulation.

Number of intersected triangles

For Delaunay triangulations on uniformly distributed random points, the *expected* number of visited triangles for each walk is:

- Rectilinear walk: $O(||p - q|| \sqrt{n})$.
- Orthogonal walk: $O((|p_x - q_x| + |p_y - q_y|) \sqrt{n})$.
- Visibility walk: there exist triangulations for which the expected number is $> 2^{3\sqrt{n}}$.

In practice, in addition to the number of intersected triangles, the cost of each operation must be taken into account, as well as the effort of programming degenerated cases.

Finally, the choice of point q can speed up or slow down the process.
TO LEARN MORE

