TRIANGULATING POINT SETS

Vera Sacristán

Computational Geometry
Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.

Corollary. All the faces of such a graph are triangles, except for the unbounded one, which is the exterior of the convex hull of P.
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.

Corollary. All the faces of such a graph are triangles, except for the unbounded one, which is the exterior of the convex hull of P.

COMPLEXITY

Every triangulation of any set P of n points has:

- $2n - h - 2$ triangles
- $3n - h - 3$ edges

where h is the number of vertices of $ch(P)$.
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.

Corollary. All the faces of such a graph are triangles, except for the unbounded one, which is the exterior of the convex hull of P.

COMPLEXITY

Every triangulation of any set P of n points has:
- $2n - h - 2$ triangles
- $3n - h - 3$ edges

where h is the number of vertices of $ch(P)$.

Proof. Each triangle has exactly 3 edges. Each internal edge belongs to exactly 2 triangles. Each external edge belongs to exactly 1 triangle. Therefore, $3t = 2(e - h) + h = 2e - h$.

According to Euler’s formula: $n + (t + 1) = v + f = e + 2$.

Combining both equations:
- $e = n + t - 1 \Rightarrow 3e = 3n + 3t - 3 = 3n + 2e - h - 3 \Rightarrow e = 3n - h - 3$
- $3t = 2e - h = 6n - 2h - 6 - h = 6n - 3h - 6 \Rightarrow t = 2n - h - 2$
DEFINITION

A triangulation of a set P of n points in the plane is a graph having P as set of vertices which is rectilinear, planar, and maximal in the number of edges.

Corollary. All the faces of such a graph are triangles, except for the unbounded one, which is the exterior of the convex hull of P.

COMPLEXITY

Every triangulation of any set P of n points has:

- $2n - h - 2$ triangles
- $3n - h - 3$ edges

where h is the number of vertices of $ch(P)$.

DEGENERACIES

As you may have noticed, we are assuming that the set P does not contain three or more points on a line. The assumption is hold along the entire chapter.
DATA STRUCTURE

We want to answer the most usual questions for any decomposition of the plane:
- For any given triangle, report its edges/vertices.
- For any given vertex, report the sorted list of edges/triangles incident to it.
- For any given edge, report its endpoints and its adjacent triangles.
DATA STRUCTURE

We want to answer the most usual questions for any decomposition of the plane:
- For any given triangle, report its edges/vertices.
- For any given vertex, report the sorted list of edges/triangles incident to it.
- For any given edge, report its endpoints and its adjacent triangles.

The appropriate structure is, once again, a DCEL:
DATA STRUCTURE

We want to answer the most usual questions for any decomposition of the plane:
- For any given triangle, report its edges/vertices.
- For any given vertex, report the sorted list of edges/triangles incident to it.
- For any given edge, report its endpoints and its adjacent triangles.

The appropriate structure is, once again, a DCEL:

Table of vertices

<table>
<thead>
<tr>
<th>v</th>
<th>x</th>
<th>y</th>
<th>e</th>
</tr>
</thead>
</table>

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
DATA STRUCTURE

We want to answer the most usual questions for any decomposition of the plane:
- For any given triangle, report its edges/vertices.
- For any given vertex, report the sorted list of edges/triangles incident to it.
- For any given edge, report its endpoints and its adjacent triangles.

The appropriate structure is, once again, a DCEL:

Table of vertices

| v | x | y | e |

Table of faces

| t | e |
DATA STRUCTURE

We want to answer the most usual questions for any decomposition of the plane:
- For any given triangle, report its edges/vertices.
- For any given vertex, report the sorted list of edges/triangles incident to it.
- For any given edge, report its endpoints and its adjacent triangles.

The appropriate structure is, once again, a DCEL:

Table of vertices

| v | x | y | e |

Table of faces

| t | e |

DCEL

| e | v_B | v_E | f_L | f_R | e_P | e_N |

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
TRIANGULATING POINT SETS

ALGORITHMS
ALGORITHMS

1. Incremental algorithms
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting

 For each i, detect whether p_i lies in the interior or the exterior of $\text{ch}(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $\text{ch}(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1, \ldots, p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1, \ldots, p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

Running time: $O(n^2)$

For each i, detect whether p_i lies in the interior or the exterior of $ch(p_1,\ldots,p_{i-1})$. If it is external, compute the supporting lines from p_i to $ch(p_1,\ldots,p_{i-1})$ and add all the intermediate diagonals to the triangulation. If it is internal, detect the triangle T containing p_i and partition T into 3 triangles.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting

 Running time: $O(n^2)$
ALGORITHMS

1. Incremental algorithms

 1.1. Without sorting

 Running time: \(O(n^2) \)

 1.2. With sorting

 Start by sorting the points in lexicographical order in \(O(n \log n) \) time. The information of the sorted order of the points allows to add the \(i \) diagonals in \(O(i) \) time, so that the amortized cost of the insertion of all diagonals is done in \(O(n) \) time.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \[\text{Running time: } O(n^2) \]
 1.2. With sorting \[\text{Running time: } O(n \log n) \]

Start by sorting the points in lexicographical order in \(O(n \log n) \) time. The information of the sorted order of the points allows to add the \(i \) diagonals in \(O(i) \) time, so that the amortized cost of the insertion of all diagonals is done in \(O(n) \) time.
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure

Running time:

- Without sorting: \(O(n^2) \)
- With sorting: \(O(n \log n) \)
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting \textbf{Running time: } $O(n^2)$
1.2. With sorting \textbf{Running time: } $O(n \log n)$
1.3. With hierarchical structure

Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
ALGORITHMS

1. Incremental algorithms

 1.1. Without sorting
 Running time: $O(n^2)$

 1.2. With sorting
 Running time: $O(n \log n)$

 1.3. With hierarchical structure

 Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \[\text{Running time: } O(n^2) \]
 1.2. With sorting \[\text{Running time: } O(n \log n) \]
 1.3. With hierarchical structure

Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \textbf{Running time: } $O(n^2)$
 1.2. With sorting \textbf{Running time: } $O(n \log n)$
 1.3. With hierarchical structure

Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \[\text{Running time: } O(n^2) \]
 1.2. With sorting \[\text{Running time: } O(n \log n) \]
 1.3. With hierarchical structure

Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \textbf{Running time: } \(O(n^2)\)
 1.2. With sorting \textbf{Running time: } \(O(n \log n)\)
 1.3. With hierarchical structure \textbf{Running time: } \(O(n^2)\) worst case, \(O(n \log n)\) if balanced

Using an auxiliary enclosing triangle and a hierarchy of triangles: each time a new point is added, a triangle gets subdivided into three children.
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms

1.1. Without sorting
Running time: \(O(n^2) \)

1.2. With sorting
Running time: \(O(n \log n) \)

1.3. With hierarchical structure
Running time: \(O(n^2) \) worst case, \(O(n \log n) \) if balanced

1.4. Randomized
Running time: \(O(n \log n) \) expected

1.5. With auxiliary point(s)

A fixed point \(p \) is used as a reference, and \(P \cup \{p\} \) is enclosed in an auxiliary triangle. When inserting each point \(p_i \):
- Scan the triangles stabbed by the segment \(\overline{pp_i} \).
- Update, if necessary, the information of the triangle containing \(p \).
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting
Running time: \(O(n^2) \)

1.2. With sorting
Running time: \(O(n \log n) \)

1.3. With hierarchical structure
Running time: \(O(n^2) \) worst case, \(O(n \log n) \) if balanced

1.4. Randomized
Running time: \(O(n \log n) \) expected

1.5. With auxiliary point(s)

A fixed point \(p \) is used as a reference, and \(P \cup \{p\} \) is enclosed in an auxiliary triangle. When inserting each point \(p_i \):
- Scan the triangles stabbed by the segment \(pp_i \).
- Update, if necessary, the information of the triangle containing \(p \).
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \(\text{Running time: } O(n^2) \)
 1.2. With sorting \(\text{Running time: } O(n \log n) \)
 1.3. With hierarchical structure \(\text{Running time: } O(n^2) \) worst case, \(O(n \log n) \) if balanced
 1.4. Randomized \(\text{Running time: } O(n \log n) \) expected
 1.5. With auxiliary point(s)

 A fixed point \(p \) is used as a reference, and \(P \cup \{p\} \) is enclosed in an auxiliary triangle. When inserting each point \(p_i \):
 - Scan the triangles stabbed by the segment \(\overline{pp_i} \).
 - Update, if necessary, the information of the triangle containing \(p \).
ALGORITHMS

1. Incremental algorithms

 1.1. Without sorting

 Running time: $O(n^2)$

 1.2. With sorting

 Running time: $O(n \log n)$

 1.3. With hierarchical structure

 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced

 1.4. Randomized

 Running time: $O(n \log n)$ expected

 1.5. With auxiliary point(s)

 A fixed point p is used as a reference, and $P \cup \{p\}$ is enclosed in an auxiliary triangle. When inserting each point p_i:

 - Scan the triangles stabbed by the segment pp_i.
 - Update, if necessary, the information of the triangle containing p.
1. Incremental algorithms

1.1. Without sorting \[\text{Running time: } O(n^2) \]

1.2. With sorting \[\text{Running time: } O(n \log n) \]

1.3. With hierarchical structure \[\text{Running time: } O(n^2) \text{ worst case, } O(n \log n) \text{ if balanced} \]

1.4. Randomized \[\text{Running time: } O(n \log n) \text{ expected} \]

1.5. With auxiliary point(s)

A fixed point \(p \) is used as a reference, and \(P \cup \{p\} \) is enclosed in an auxiliary triangle. When inserting each point \(p_i \):
- Scan the triangles stabbed by the segment \(\overline{pp_i} \).
- Update, if necessary, the information of the triangle containing \(p \).
ALGORITHMS

1. Incremental algorithms

1.1. Without sorting

Running time: $O(n^2)$

1.2. With sorting

Running time: $O(n \log n)$

1.3. With hierarchical structure

Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced

1.4. Randomized

Running time: $O(n \log n)$ expected

1.5. With auxiliary point(s)

Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

A fixed point p is used as a reference, and $P \cup \{p\}$ is enclosed in an auxiliary triangle. When inserting each point p_i:

- Scan the triangles stabbed by the segment pp_i.
- Update, if necessary, the information of the triangle containing p.

![Diagram of point triangulation](image-url)
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \[\text{Running time: } O(n^2) \]
 1.2. With sorting \[\text{Running time: } O(n \log n) \]
 1.3. With hierarchical structure \[\text{Running time: } O(n^2) \text{ worst case, } O(n \log n) \text{ if balanced} \]
 1.4. Randomized \[\text{Running time: } O(n \log n) \text{ expected} \]
 1.5. With auxiliary point(s) \[\text{Running time: } O(n^2) \text{ worst case, } O(n^{3/2}) \text{ expected} \]

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting \hspace{1cm} \textbf{Running time: } O(n^2)
 1.2. With sorting \hspace{1cm} \textbf{Running time: } O(n \log n)
 1.3. With hierarchical structure \hspace{1cm} \textbf{Running time: } O(n^2) \text{ worst case, } O(n \log n) \text{ if balanced}
 1.4. Randomized \hspace{1cm} \textbf{Running time: } O(n \log n) \text{ expected}
 1.5. With auxiliary point(s) \hspace{1cm} \textbf{Running time: } O(n^2) \text{ worst case, } O(n^{3/2}) \text{ expected}

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time:

- Without sorting: $O(n^2)$
- With sorting: $O(n \log n)$
- With hierarchical structure: $O(n^2)$ worst case, $O(n \log n)$ if balanced
- Randomized: $O(n \log n)$ expected
- With auxiliary point(s): $O(n^2)$ worst case, $O(n^{3/2})$ expected
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time: $O(n^2)$
Running time: $O(n \log n)$
Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
Running time: $O(n \log n)$ expected
Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time: \(O(n^2)\)

Running time: \(O(n \log n)\)

Running time: \(O(n^2)\) worst case, \(O(n \log n)\) if balanced

Running time: \(O(n \log n)\) expected

Running time: \(O(n^2)\) worst case, \(O(n^{3/2})\) expected
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time: $O(n^2)$
Running time: $O(n \log n)$
Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
Running time: $O(n \log n)$ expected
Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time: \(O(n^2) \)

Running time: \(O(n \log n) \)

Running time: \(O(n^2) \) worst case, \(O(n \log n) \) if balanced

Running time: \(O(n \log n) \) expected

Running time: \(O(n^2) \) worst case, \(O(n^{3/2}) \) expected

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time:

- **1.1. Without sorting**: $O(n^2)$
- **1.2. With sorting**: $O(n \log n)$
- **1.3. With hierarchical structure**: $O(n^2)$ worst case, $O(n \log n)$ if balanced
- **1.4. Randomized**: $O(n \log n)$ expected
- **1.5. With auxiliary point(s)**: $O(n^2)$ worst case, $O(n^{3/2})$ expected
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

Running time: $O(n^2)$

Running time: $O(n \log n)$

Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced

Running time: $O(n \log n)$ expected

Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
 Running time: $O(n \log n)$
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 1.2. With sorting
 1.3. With hierarchical structure
 1.4. Randomized
 1.5. With auxiliary point(s)

2. Graham’s algorithm

3. Divide and conquer

Running time:
- $O(n^2)$
- $O(n \log n)$
- $O(n^2)$ worst case, $O(n \log n)$ if balanced
- $O(n \log n)$ expected
- $O(n^2)$ worst case, $O(n^{3/2})$ expected
- $O(n \log n)$
ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
 Running time: $O(n \log n)$

3. Divide and conquer

 Initialization
 Sort the points by abscissa

 Advance
 - Partition: divide the points into roughly two vertically separated halves
 - Recursion: recursively triangulate each half
 - Fusion: compute the external common tangents and triangulate the intermediate space
ALGORITHMS

1. Incremental algorithms
 - 1.1. Without sorting
 - **Running time:** $O(n^2)$
 - 1.2. With sorting
 - **Running time:** $O(n \log n)$
 - 1.3. With hierarchical structure
 - **Running time:** $O(n^2)$ worst case, $O(n \log n)$ if balanced
 - 1.4. Randomized
 - **Running time:** $O(n \log n)$ expected
 - 1.5. With auxiliary point(s)
 - **Running time:** $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
 - **Running time:** $O(n \log n)$

3. Divide and conquer

 Initialization
 - Sort the points by abscissa

 Advance
 - Partition: divide the points into roughly two vertically separated halves
 - Recursion: recursively triangulate each half
 - Fusion: compute the external common tangents and triangulate the intermediate space

 Running time: $O(n \log n)$
TRIANGULATING POINT SETS

ALGORITHMS

1. Incremental algorithms
 1.1. Without sorting
 Running time: $O(n^2)$
 1.2. With sorting
 Running time: $O(n \log n)$
 1.3. With hierarchical structure
 Running time: $O(n^2)$ worst case, $O(n \log n)$ if balanced
 1.4. Randomized
 Running time: $O(n \log n)$ expected
 1.5. With auxiliary point(s)
 Running time: $O(n^2)$ worst case, $O(n^{3/2})$ expected

2. Graham’s algorithm
 Running time: $O(n \log n)$

3. Divide and conquer
 Running time: $O(n \log n)$

LOWER BOUND

This problem has an $\Omega(n \log n)$ lower bound, since the convex hull of the set of points can be trivially obtained in $O(n)$ time from the triangulation.
Quality of a triangulation
Quality of a triangulation
Quality of a triangulation

Incremental, without sorting
Quality of a triangulation

Incremental, sorting
Quality of a triangulation

Graham’s
Quality of a triangulation

Divide and conquer
Quality of a triangulation

Incremental, unsorted
Incremental, sorted
Graham’s scan
Divide and conquer
Quality of a triangulation

- Incremental, unsorted
- Incremental, sorted
- Graham's scan
- Divide and conquer
- Delaunay triangulation
Quality of a triangulation

Delaunay
Quality of a triangulation

Delaunay
Delaunay Triangulation
DELAUNAY TRIANGULATION

A TOOL FOR INTERPOLATION

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
DELAUNAY TRIANGULATION

A TOOL FOR INTERPOLATION

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
DELAUNAY TRIANGULATION

DEFINITION AND PROPERTIES
DELAUNAY TRIANGULATION

DEFINITION AND PROPERTIES

Definition

Given a set P with n points in the plane...
DEFINITION AND PROPERTIES

Definition

Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.
Definition

Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.
DELAUNAY TRIANGULATION

DEFINITION AND PROPERTIES

Definition

Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Characterization

- Two points $p_i, p_j \in P$ form a Delaunay edge if and only if there exists a circle through p_i and p_j which does not contain any point of P in its interior.
DEFINITION AND PROPERTIES

Definition

Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Characterization

- Two points $p_i, p_j \in P$ form a Delaunay edge if and only if there exists a circle through p_i and p_j which does not contain any point of P in its interior.

- Three points p_i, p_j, p_k form a Delaunay triangle (in general, are vertices of a face) if and only if the circle through them does not contain any point of P in its interior.
DEFINITION AND PROPERTIES

Definition
Given a set \(P \) of \(n \) points in the plane, the Delaunay triangulation of \(P \), \(Del(P) \), is the rectilinear dual graph of the Voronoi diagram \(Vor(P) \).

Characterization
- Two points \(p_i, p_j \in P \) form a Delaunay edge if and only if there exists a circle through \(p_i \) and \(p_j \) which does not contain any point of \(P \) in its interior.

- Three points \(p_i, p_j, p_k \) form a Delaunay triangle (in general, are vertices of a face) if and only if the circle through them does not contain any point of \(P \) in its interior.
DELAUNAY TRIANGULATION

DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

If \overline{pq} is a Delaunay edge, there exists an empty circle through p and q. If a segment \overline{rs} intersects \overline{pq}, then every circle through r and s contains at least one of p or q.
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivally completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivally completed (although this can be done in several different ways).
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property

$\text{Del}(P)$ is a plane graph

Property

$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivally completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph.

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DELAUNAY TRIANGULATION

DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $Del(P)$, is the rectilinear dual graph of the Voronoi diagram $Vor(P)$.

Property
$Del(P)$ is a plane graph

Property
$Del(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $Del(P)$, is the rectilinear dual graph of the Voronoi diagram $Vor(P)$.

Property
$Del(P)$ is a plane graph

Property
$Del(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
DEFINITION AND PROPERTIES

Definition
Given a set P of n points in the plane, the Delaunay triangulation of P, $\text{Del}(P)$, is the rectilinear dual graph of the Voronoi diagram $\text{Vor}(P)$.

Property
$\text{Del}(P)$ is a plane graph

Property
$\text{Del}(P)$ is a triangulation of P, except when P has three or more concyclic points. In this case, it is a pre-triangulation which can be trivially completed (although this can be done in several different ways).
GLOBAL CHARACTERIZATION

Theorem

\[T(P) = \text{Del}(P) \text{ iff the circumcircles of the triangles of } T(P) \text{ are empty of points of } P. \]
Theorem

\[T(P) = Del(P) \text{ iff the circumcircles of the triangles of } T(P) \text{ are empty of points of } P. \]

Let \(p_i \in P \). Let \(p_1, \ldots, p_k \) be the vertices of the triangles of \(T(P) \) incident to \(p_i \), sorted in counterclockwise order, \(C_1, \ldots, C_k \) be their circumcircles, and \(q_1, \ldots, q_k \) their centers (\(q_j \) denotes the center of \(C_j \), the circumcircle of \(p_i, p_j, p_{j+1} \)). We will prove that the polygon \(Q = \{q_1, \ldots, q_k\} \) coincides with \(Vor(p_i) \).
Theorem

\[T(P) = \text{Del}(P) \] iff the circumcircles of the triangles of \(T(P) \) are empty of points of \(P \).

Let \(p_i \in P \). Let \(p_1, \ldots, p_k \) be the vertices of the triangles of \(T(P) \) incident to \(p_i \), sorted in counterclockwise order, \(C_1, \ldots, C_k \) be their circumcircles, and \(q_1, \ldots, q_k \) their centers (\(q_j \) denotes the center of \(C_j \), the circumcircle of \(p_i, p_j, p_{j+1} \)). We will prove that the polygon \(Q = \{q_1, \ldots, q_k\} \) coincides with \(\text{Vor}(p_i) \).

\[
\overline{q_{j-1}q_j} \perp \overline{p_ip_j} \quad \Rightarrow \quad Q = \bigcap_{j=1}^{k} H_{ij}
\]
Theorem

\(T(P) = Del(P) \) iff the circumcircles of the triangles of \(T(P) \) are empty of points of \(P \).

Let \(p_i \in P \). Let \(p_1, \ldots, p_k \) be the vertices of the triangles of \(T(P) \) incident to \(p_i \), sorted in counterclockwise order, \(C_1, \ldots, C_k \) be their circumcircles, and \(q_1, \ldots, q_k \) their centers (\(q_j \) denotes the center of \(C_j \), the circumcircle of \(p_i, p_j, p_j+1 \)). We will prove that the polygon \(Q = \{q_1, \ldots, q_k\} \) coincides with \(Vor(p_i) \).

\[
\overline{q_{j-1}q_j} \perp \overline{p_ip_j} \implies Q = \bigcap_{j=1}^{k} H_{ij}
\]

If \(h \neq 1, \ldots, k \) then \(q_j \in b(p_i, r_h) \) and, therefore,

\[
\bigcap_{j=1}^{k} H_{ij} \subset H(p_i, r_h) \subset H_{ih}
\]
Theorem

$T(P) = Del(P)$ iff the circumcircles of the triangles of $T(P)$ are empty of points of P.

Let $p_i \in P$. Let p_1, \ldots, p_k be the vertices of the triangles of $T(P)$ incident to p_i, sorted in counterclockwise order, C_1, \ldots, C_k be their circumcircles, and q_1, \ldots, q_k their centers (q_j denotes the center of C_j, the circumcircle of p_i, p_j, p_{j+1}). We will prove that the polygon $Q = \{q_1, \ldots, q_k\}$ coincides with $Vor(p_i)$.

If $h \neq 1, \ldots, k$ then $q_j \in b(p_i, r_h)$ and, therefore,

$$\bigcap_{j=1}^{k} H_{ij} \subset H(p_i, r_h) \subset H_{ih}$$

Hence,

$$Q = \bigcap_{j=1}^{k} H_{ij} = \bigcap_{j \neq i} H_{ij} = Vor(p_i)$$
Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $\text{Del}(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $\text{Del}(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
DELAUNAY TRIANGULATION

DELAUNAY TRIANGULATION AND 3D CONVEX HULL

Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $Del(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
Theorem

Let \(P = \{p_1, \ldots, p_n\} \) with \(p_i = (a_i, b_i, 0) \). Let \(p_i^* = (a_i, b_i, a_i^2 + b_i^2) \) be the vertical projection of each point \(p_i \) onto the paraboloid \(z = x^2 + y^2 \). Then \(Del(P) \) is the orthogonal projection onto the plane \(z = 0 \) of the lower convex hull of \(P^* \).
DELAUNAY TRIANGULATION AND 3D CONVEX HULL

Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $Del(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $Del(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
DELAUNAY TRIANGULATION

DELAUNAY TRIANGULATION AND 3D CONVEX HULL

Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $\text{Del}(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p^*_i = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $\text{Del}(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.
Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $Del(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.

p_i^*, p_j^*, p_k^* form a (triangular) face of the lower convex hull of P^*
DELAUNAY TRIANGULATION

DELAUNAY TRIANGULATION AND 3D CONVEX HULL

Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $Del(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.

p_i^*, p_j^*, p_k^* form a (triangular) face of the lower convex hull of P^*

The plane through p_i^*, p_j^*, p_k^* leaves all the remaining points of P^* above it.
Theorem

Let \(P = \{p_1, \ldots, p_n\} \) with \(p_i = (a_i, b_i, 0) \). Let \(p_i^* = (a_i, b_i, a_i^2 + b_i^2) \) be the vertical projection of each point \(p_i \) onto the paraboloid \(z = x^2 + y^2 \). Then \(\text{Del}(P) \) is the orthogonal projection onto the plane \(z = 0 \) of the lower convex hull of \(P^* \).

\(p_i^*, p_j^*, p_k^* \) form a (triangular) face of the lower convex hull of \(P^* \)

\[\uparrow \quad \uparrow \]

The plane through \(p_i^*, p_j^*, p_k^* \) leaves all the remaining points of \(P^* \) above it

\[\uparrow \quad \uparrow \]

The circle through \(p_i, p_j, p_k \) leaves all the remaining points of \(P \) in its exterior
DELAUNAY TRIANGULATION

DELAUNAY TRIANGULATION AND 3D CONVEX HULL

Theorem

Let $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then $\text{Del}(P)$ is the orthogonal projection onto the plane $z = 0$ of the lower convex hull of P^*.

p_i^*, p_j^*, p_k^* form a (triangular) face of the lower convex hull of P^*

The plane through p_i^*, p_j^*, p_k^* leaves all the remaining points of P^* above it

The circle through p_i, p_j, p_k leaves all the remaining points of P in its exterior

p_i, p_j, p_k form a triangle of $\text{Del}(P)$
DELAUNAY TRIANGULATION

LOCAL CHARACTERIZATION
A triangulation $T(P)$ is locally Delaunay if each pair of triangles $p_i p_j p_k$ and $p_i p_j p_l$ sharing an edge $p_i p_j$ satisfies $p_l \notin C_{ijk}$ and $p_k \notin C_{ijl}$.
DELAUNAY TRIANGULATION

LOCAL CHARACTERIZATION

Definition

A triangulation $T(P)$ is **locally Delaunay** if each pair of triangles $p_ip_jp_k$ and $p_ip_jp_l$ sharing an edge p_ip_j satisfies $p_l \notin C_{ijk}$ and $p_k \notin C_{ijl}$.

The edge p_ip_j is locally Delaunay

The edge p_ip_j is not locally Delaunay

The edge p_ip_j is locally Delaunay

In fact, the quadrilateral $p_ip_lp_jp_k$ is not convex.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation.
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation. There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in int(C_{ijk})$.
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation. There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in \text{int}(C_{ijk})$. Let p_ip_j be the edge of T_{ijk} separating p_l from T_{ijk}. Among all 4-tuples in this situation, let $ijkl$ maximize the angle $p_ip_lp_j$.
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation. There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in \text{int}(C_{ijk})$.

Let $\overline{p_ip_j}$ be the edge of T_{ijk} separating p_l from T_{ijk}. Among all 4-tuples in this situation, let $ijkl$ maximize the angle $p_ip_lp_j$.

Let T_{ijm} be the triangle adjacent to T_{ijk} though the edge $\overline{p_ip_j}$.
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation. There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in \text{int}(C_{ijk})$.

Let $\overline{p_ip_j}$ be the edge of T_{ijk} separating p_l from T_{ijk}. Among all 4-tuples in this situation, let $ijkl$ maximize the angle $\angle p_ip_lp_j$.

Let T_{ijm} be the triangle adjacent to T_{ijk} though the edge $\overline{p_ip_j}$. As $T(P)$ is locally Delaunay, $m \neq l$.

\[\text{Computational Geometry, Facultat d'Informàtica de Barcelona, UPC}\]
Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation. There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in \text{int}(C_{ijk})$. Let $\overline{p_ip_j}$ be the edge of T_{ijk} separating p_l from T_{ijk}. Among all 4-tuples in this situation, let $ijkl$ maximize the angle $\angle p_ip_lp_j$.

Let T_{ijm} be the triangle adjacent to T_{ijk} though the edge $\overline{p_ip_j}$. As $T(P)$ is locally Delaunay, $m \neq l$. Then $p_l \in C_{ijm}$.
DELAUNAY TRIANGULATION

LOCAL CHARACTERIZATION

Theorem

A triangulation $T(P)$ is a Delaunay triangulation if and only if it is locally Delaunay.

Suppose that $T(P)$ was locally Delaunay without being a Delaunay triangulation.

There would exist a triangle $T_{ijk} = p_ip_jp_k$ and a point p_l such that $p_l \in \text{int}(C_{ijk})$.

Let $\overline{p_ip_j}$ be the edge of T_{ijk} separating p_l from T_{ijk}. Among all 4-tuples in this situation, let $ijkl$ maximize the angle $p_ip_lp_j$.

Let T_{ijm} be the triangle adjacent to T_{ijk} though the edge $\overline{p_ip_j}$.

As $T(P)$ is locally Delaunay, $m \neq l$.

Then $p_l \in C_{ijm}$.

Hence, one of the angles $p_ip_lp_m$ or $p_jp_lp_m$ would be greater than $p_ip_lp_j$.
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let C be a circle, \overline{ab} a chord of C, and p, q, r and s four points lying to the same side of the line \overline{ab}. If r is internal to C, p and q lie in C, and s is external to C, then the following relations hold between the angles formed at p, q, r and s by the chord \overline{ab}: $\hat{s} < \hat{p} = \hat{q} < \hat{r}$.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let C be a circle, \overline{ab} a chord of C, and p, q, r and s four points lying to the same side of the line \overline{ab}. If r is internal to C, p and q lie in C, and s is external to C, then the following relations hold between the angles formed at p, q, r and s by the chord \overline{ab}: $\hat{s} < \hat{p} = \hat{q} < \hat{r}$.
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let C be a circle, \overline{ab} a chord of C, and p, q, r and s four points lying to the same side of the line \overline{ab}. If r is internal to C, p and q lie in C, and s is external to C, then the following relations hold between the angles formed at p, q, r and s by the chord \overline{ab}: $\hat{s} < \hat{p} = \hat{q} < \hat{r}$.

Let us prove that $\hat{p} = \hat{q}$:
DELAUNAY TRiangulation

DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let C be a circle, \overline{ab} a chord of C, and p, q, r and s four points lying to the same side of the line \overline{ab}. If r is internal to C, p and q lie in C, and s is external to C, then the following relations hold between the angles formed at p, q, r and s by the chord \overline{ab}: $\hat{s} < \hat{p} = \hat{q} < \hat{r}$.

Let us prove that $\hat{p} = \hat{q}$:

First case:

\[
\begin{align*}
2\delta + 2\gamma + 2\beta &= \pi \\
2\alpha + 2\beta &= \pi
\end{align*}
\]
\[\Rightarrow 2\alpha = 2\gamma + 2\delta \Rightarrow \alpha = \gamma + \delta \Rightarrow \hat{p} = \hat{q} = \alpha\]
DELAUNAY TRIANGULATION

DELAUNAY FLIPS

We intend to prove that \(\text{Del}(P) \) can be obtained from any triangulation of \(P \) by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let \(C \) be a circle, \(\overline{ab} \) a chord of \(C \), and \(p, q, r \) and \(s \) four points lying to the same side of the line \(\overline{ab} \). If \(r \) is internal to \(C \), \(p \) and \(q \) lie in \(C \), and \(s \) is external to \(C \), then the following relations hold between the angles formed at \(p, q, r \) and \(s \) by the chord \(\overline{ab} \): \(\hat{s} < \hat{p} = \hat{q} < \hat{r} \).

Let us prove that \(\hat{p} = \hat{q} \):

First case:

\[
2\delta + 2\gamma + 2\beta = \pi \quad \text{and} \quad 2\alpha + 2\beta = \pi \quad \Rightarrow \quad 2\alpha = 2\gamma + 2\delta \quad \Rightarrow \quad \alpha = \gamma + \delta \quad \Rightarrow \quad \hat{p} = \hat{q} = \alpha
\]

Second case:

\[
2\alpha + \epsilon + 2\delta = \pi \quad \text{and} \quad 2\gamma + \epsilon = \pi \quad \Rightarrow \quad 2\alpha + 2\delta - 2\gamma = 0 \quad \Rightarrow \quad \alpha = \gamma - \delta \quad \Rightarrow \quad \hat{p} = \hat{q} = \alpha
\]
DELAUNAY FLIPS

We intend to prove that Del(\(P\)) can be obtained from any triangulation of \(P\) by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 1. Let \(C\) be a circle, \(ab\) a chord of \(C\), and \(p, q, r\) and \(s\) four points lying to the same side of the line \(ab\). If \(r\) is internal to \(C\), \(p\) and \(q\) lie in \(C\), and \(s\) is external to \(C\), then the following relations hold between the angles formed at \(p, q, r\) and \(s\) by the chord \(ab\): \(\hat{s} < \hat{p} = \hat{q} < \hat{r}\).

Let us prove that \(\hat{p} = \hat{q}\):

The remaining relations follow immediately:
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 2. When the chord \overline{ab} is a diameter of C, the angle \hat{p} for any $p \in C$ is $\pi/2$.
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 2. When the chord \overline{ab} is a diameter of C, the angle \hat{p} for any $p \in C$ is $\pi/2$.

Since in this case $2\alpha = \pi$.

![Diagram of a circle with chord \overline{ab} and Delaunay triangles]

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 3. Given any chord \overline{ab} in a circle C, if one of the arcs corresponds to α, then the other one corresponds to $\pi - \alpha$.
DELAUNAY TRIANGULATION

DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 3. Given any chord \overline{ab} in a circle C, if one of the arcs corresponds to α, then the other one corresponds to $\pi - \alpha$.
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 3. Given any chord \overline{ab} in a circle C, if one of the arcs corresponds to α, then the other one corresponds to $\pi - \alpha$.

\[
\begin{align*}
\alpha_1 + \beta + \gamma &= \frac{\pi}{2} \\
\alpha_2 + \beta + \delta &= \frac{\pi}{2}
\end{align*}
\Rightarrow \begin{align*}
\alpha + 2\beta + \gamma + \delta &= \pi \\
x + \gamma + \delta &= \pi \\
2\alpha + 2\beta &= \pi
\end{align*}
\Rightarrow x = \pi - \alpha
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 4. Let \overline{pq} be the common edge of the triangles pqa and pqb, forming a convex quadrilateral. Then:

$$a \in \text{ext}(C_{pqb}) \iff b \in \text{ext}(C_{pqa})$$
DELAUNAY FLIPS

We intend to prove that $Del(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 4. Let pq be the common edge of the triangles pqa and pqb, forming a convex quadrilateral. Then:

$$a \in ext(C_{pqb}) \iff b \in ext(C_{pqa})$$

![Diagram](https://via.placeholder.com/150)
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 4. Let pq be the common edge of the triangles pqa and pqb, forming a convex quadrilateral. Then:

$$a \in \text{ext}(C_{pqb}) \iff b \in \text{ext}(C_{pqa})$$

$$a \in \text{ext}(C_{pqb}) \iff \alpha < \pi - \beta \iff \beta < \pi - \alpha \iff b \in \text{ext}(C_{pqa})$$
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 5. Consider a convex quadrilateral with diagonals \overline{ab} and \overline{pq}. Then:

\[
\overline{ab} \text{ is not locally Delaunay } \iff \overline{pq} \text{ is locally Delaunay}
\]
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 5. Consider a convex quadrilateral with diagonals \overline{ab} and \overline{pq}. Then:

\overline{ab} is not locally Delaunay \iff \overline{pq} is locally Delaunay

\overline{ab} is not locally Delaunay

$\iff q \in \text{int}(\mathcal{C}_{abp})$
$\iff \hat{aqp} > \hat{abp}$
$\iff b \in \text{ext}(\mathcal{C}_{apq})$
$\iff \overline{pq}$ is locally Delaunay
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 6. Let P be a set of points $p_i = (x_i, y_i, 0)$ in the plane, and let P^* be the set of their vertical projections $p^* = (x_i, y_i, x_i^2 + y_i^2)$ onto the unit paraboloid. Producing a Delaunay flip in a triangulation of P corresponds to “sticking” a tetrahedron from below to the corresponding polyhedrization of P^*.
We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 6. Let P be a set of points $p_i = (x_i, y_i, 0)$ in the plane, and let P^* be the set of their vertical projections $p^* = (x_i, y_i, x_i^2 + y_i^2)$ onto the unit paraboloid. Producing a Delaunay flip in a triangulation of P corresponds to “sticking” a tetrahedron from below to the corresponding polyhedrization of P^*.
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 6. Let P be a set of points $p_i = (x_i, y_i, 0)$ in the plane, and let P^* be the set of their vertical projections $p^* = (x_i, y_i, x_i^2 + y_i^2)$ onto the unit paraboloid. Producing a Delaunay flip in a triangulation of P corresponds to “sticking” a tetrahedron from below to the corresponding polyhedrization of P^*.
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Lemma 6. Let P be a set of points $p_i = (x_i, y_i, 0)$ in the plane, and let P^* be the set of their vertical projections $p^* = (x_i, y_i, x_i^2 + y_i^2)$ onto the unit paraboloid. Producing a Delaunay flip in a triangulation of P corresponds to “sticking” a tetrahedron from below to the corresponding polyhedrization of P^*.

Once flipped, the quadrilateral is locally Delaunay: the fourth point lies in the exterior of the circumcircle of the triangle.

In the paraboloid, this means that the fourth point lies above the triangular face of the polyhedrization.
DELAUNAY FLIPS

We intend to prove that $\text{Del}(P)$ can be obtained from any triangulation of P by Delaunay flips, which consist in deleting the diagonal of a convex quadrilateral if it is not locally Delaunay, and replacing it by the other diagonal of the quadrilateral.

Corollary. Given any triangulation of P, performing locally Delaunay flips is a procedure converging to $\text{Del}(P)$.
1. Compute the Voronoi diagram by any of the known methods and dualize it.
ALGORITHMS

1. Compute the Voronoi diagram by any of the known methods and dualize it.

2. Project the points onto the paraboloid, compute the 3D convex hull by any of the known methods, and project it back onto the plane.
1. Compute the Voronoi diagram by any of the known methods and dualize it.

2. Project the points onto the paraboloid, compute the 3D convex hull by any of the known methods, and project it back onto the plane.

3. Compute a triangulation, by any of the known methods, and apply Delaunay flips.
1. Compute the Voronoi diagram by any of the known methods and dualize it.

2. Project the points onto the paraboloid, compute the 3D convex hull by any of the known methods, and project it back onto the plane.

3. Compute a triangulation, by any of the known methods, and apply Delaunay flips.

4. Incremental algorithm
 - Compute an enclosing triangle for \(\{p_1, \ldots, p_n\} \)
 - Compute \(\text{Del}(p_1, \ldots, p_{i+1}) \) from \(\text{Del}(p_1, \ldots, p_i) \)
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let \(D_i = Del(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(pq, pr \) and \(ps \) are edges of \(D_{i+1} \).
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

As C_{qrs} is empty, there exist empty circles C_{pq}, such as the circle through p and q tangent to C_{qrs} in q. Similarly for r and s.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let \(D_i = Del(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(\overline{pq}, \overline{pr} \) and \(\overline{ps} \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(\overline{qr} \) may not be a Delaunay edge.
Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Since p may lie in the interior of C_{qrt}.
Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Obvious, because the property is local: it affects only quadrilaterals formed by two triangles sharing an edge.
INCREMEITAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let \(D_i = Del(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(\overline{pq}, \overline{pr}, \text{ and } \overline{ps} \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(\overline{qr} \) may not be a Delaunay edge.

Observation 3. The insertion of the point \(p \) can only violate the Delaunay property of the triangles incident to \(p \).

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to \(p \) non locally Delaunay, flip them.
Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
DELTAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let \(D_i = \text{Del}(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(\overline{pq} \), \(\overline{pr} \) and \(\overline{ps} \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(\overline{qr} \) may not be a Delaunay edge.

Observation 3. The insertion of the point \(p \) can only violate the Delaunay property of the triangles incident to \(p \).

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to \(p \) non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let \(D_i = Del(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(pq, pr \) and \(ps \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(qr \) may not be a Delaunay edge.

Observation 3. The insertion of the point \(p \) can only violate the Delaunay property of the triangles incident to \(p \).

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to \(p \) non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
INCREMENTAL ALGORITHM

Let \(D_i = \text{Del}(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(pq \), \(pr \) and \(ps \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(qr \) may not be a Delaunay edge.

Observation 3. The insertion of the point \(p \) can only violate the Delaunay property of the triangles incident to \(p \).

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to \(p \) non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.
INCREMENTAL ALGORITHM

Let \(D_i = Del(p_1, \ldots, p_i) \) and \(p = p_{i+1} \).

Observation 1. If \(qrs \) is the triangle of \(D_i \) containing \(p \), then \(pq, pr \) and \(ps \) are edges of \(D_{i+1} \).

Observation 2. Let \(pqr \) be a triangle incident to \(p \). The edge \(qr \) may not be a Delaunay edge.

Observation 3. The insertion of the point \(p \) can only violate the Delaunay property of the triangles incident to \(p \).

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to \(p \) non locally Delaunay, flip them.
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.

Added running time

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.

Added running time

The added running time of performing the flips when adding p_i is

$$O(\text{degree of } p_i \text{ in } D_i) = O(n).$$
DELAUNAY TRIANGULATION

INCREMENTAL ALGORITHM

Let $D_i = Del(p_1, \ldots, p_i)$ and $p = p_{i+1}$.

Observation 1. If qrs is the triangle of D_i containing p, then pq, pr and ps are edges of D_{i+1}.

Observation 2. Let pqr be a triangle incident to p. The edge qr may not be a Delaunay edge.

Observation 3. The insertion of the point p can only violate the Delaunay property of the triangles incident to p.

Algorithm

Each time a new point is added to the triangulation, and before adding the next point, the following routine is executed:

Flips

While there are still triangles incident to p non locally Delaunay, flip them.

Added running time

The added running time of performing the flips when adding p_i is

$$O(\text{degree of } p_i \text{ in } D_i) = O(n).$$

As the average order is smaller than 6, the expected added running time is not $O(n^2)$ but simply $O(n)$.
Among all the triangulations of P, the Delaunay triangulation maximizes the minimum angle (the angles of $Del(P)$ are less acute).
Among all the triangulations of P, the Delaunay triangulation maximizes the minimum angle (the angles of $\text{Del}(P)$ are less acute).

Let us be more precise:

If $\mathcal{T} = \{T_1, \ldots, T_t\}$ is a triangulation of P, the “fineness” of \mathcal{T} is the increasingly sorted list of the angles of all the triangles T_i of \mathcal{T}: $F(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3t})$.
Among all the triangulations of P, the Delaunay triangulation maximizes the minimum angle (the angles of $\text{Del}(P)$ are less acute).

Let us be more precise:

If $\mathcal{T} = \{T_1, \ldots, T_t\}$ is a triangulation of P, the “fineness” of \mathcal{T} is the increasingly sorted list of the angles of all the triangles T_i of \mathcal{T}: $F(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3t})$.

Since every triangulation of P has $t = 2n - h - 2$ triangles, these $3t$-tuples can be compared and lexicographically sorted.
Among all the triangulations of P, the Delaunay triangulation maximizes the minimum angle (the angles of $\text{Del}(P)$ are less acute).

Let us be more precise:

If $\mathcal{T} = \{T_1, \ldots, T_t\}$ is a triangulation of P, the “fineness” of \mathcal{T} is the increasingly sorted list of the angles of all the triangles T_i of \mathcal{T}: $F(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3t})$.

Since every triangulation of P has $t = 2n - h - 2$ triangles, these $3t$-tuples can be compared and lexicographically sorted.

The Delaunay triangulation maximizes the “fineness”:

$$F(\text{Del}(P)) \geq F(\mathcal{T}), \quad \forall \mathcal{T} \text{ triangulation of } P.$$
Among all the triangulations of P, the Delaunay triangulation maximizes the minimum angle (the angles of $\text{Del}(P)$ are less acute).

Let us be more precise:

If $\mathcal{T} = \{T_1, \ldots, T_t\}$ is a triangulation of P, the “fineness” of \mathcal{T} is the increasingly sorted list of the angles of all the triangles T_i of \mathcal{T}: $F(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3t})$.

Since every triangulation of P has $t = 2n - h - 2$ triangles, these $3t$-tuples can be compared and lexicographically sorted.

The Delaunay triangulation maximizes the “fineness”:

$$F(\text{Del}(P)) \geq F(\mathcal{T}), \quad \forall \mathcal{T} \text{ triangulation of } P.$$

The proof of this statement requires a last lemma.
Lemma 7. Let a, b, c and d be four points forming a convex quadrilateral, in counterclockwise order. Let \mathcal{T} and \mathcal{T}' be the two possible triangulations of the quadrilateral: \mathcal{T} uses the diagonal ac and \mathcal{T}' uses bd. Let ϵ and ϵ' respectively be the minimum angles of \mathcal{T} and \mathcal{T}'. Then:

\[
\begin{align*}
\epsilon > \epsilon' & \iff d \in \text{ext}(C_{abc}) \\
\epsilon = \epsilon' & \iff d \in \partial(C_{abc}) \\
\epsilon < \epsilon' & \iff d \in \text{int}(C_{abc})
\end{align*}
\]
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in \text{ext}(C_{abc})$.
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$.
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in \text{ext}(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in \text{ext}(C_{abc})$

If $\epsilon > \epsilon'$, then ϵ' cannot be α, nor γ.

\[\alpha_1 \quad \beta_1 \quad \alpha_2 \quad \beta_2 \]

\[\gamma_1 \quad \gamma_2 \]

\[\alpha \quad \delta \quad \delta_1 \quad \delta_2 \]
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$

 If $\epsilon > \epsilon'$, then ϵ' cannot be α, nor γ.

 If $\epsilon' = \delta_2$, then $\delta_2 = \epsilon' < \epsilon \leq \alpha_1$ and, therefore, $d \in ext(C_{abc})$.

Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$

If $\epsilon > \epsilon'$, then ϵ' cannot be α, nor γ.

If $\epsilon' = \delta_2$, then $\delta_2 = \epsilon' < \epsilon \leq \alpha_1$ and, therefore, $d \in ext(C_{abc})$.

If $\epsilon' = \delta_1$, then $\delta_1 = \epsilon' < \epsilon \leq \gamma_1$ and, therefore, $d \in ext(C_{abc})$.

Computational Geometry, Facultat d'Informàtica de Barcelona, UPC
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$

If $\epsilon > \epsilon'$, then ϵ' cannot be α, nor γ.

If $\epsilon' = \delta_2$, then $\delta_2 = \epsilon' < \epsilon \leq \alpha_1$ and, therefore, $d \in ext(C_{abc})$.

If $\epsilon' = \delta_1$, then $\delta_1 = \epsilon' < \epsilon \leq \gamma_1$ and, therefore, $d \in ext(C_{abc})$.

If $\epsilon' = \beta_1$, then $\beta_1 = \epsilon' < \epsilon \leq \gamma_2$ and, therefore, $d \in ext(C_{abc})$.
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in \text{ext}(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in \text{ext}(C_{abc})$

- If $\epsilon > \epsilon'$, then ϵ' cannot be α, nor γ.
- If $\epsilon' = \delta_2$, then $\delta_2 = \epsilon' < \epsilon \leq \alpha_1$ and, therefore, $d \in \text{ext}(C_{abc})$.
- If $\epsilon' = \delta_1$, then $\delta_1 = \epsilon' < \epsilon \leq \gamma_1$ and, therefore, $d \in \text{ext}(C_{abc})$.
- If $\epsilon' = \beta_1$, then $\beta_1 = \epsilon' < \epsilon \leq \gamma_2$ and, therefore, $d \in \text{ext}(C_{abc})$.
- If $\epsilon' = \beta_2$, then $\beta_2 = \epsilon' < \epsilon \leq \alpha_2$ and, therefore, $d \in \text{ext}(C_{abc})$.
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$.
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in \text{ext}(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in \text{ext}(C_{abc})$

If $d \in \text{ext}(C_{abc})$, then $\epsilon > \epsilon'$
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$

If $d \in ext(C_{abc})$, then $\epsilon > \epsilon'$

 If $\epsilon = \beta$, then $\epsilon = \beta > \beta_1 \geq \epsilon'$

 If $\epsilon = \delta$, then $\epsilon = \delta > \delta_1 \geq \epsilon'$
Due to the symmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$

If $d \in ext(C_{abc})$, then $\epsilon > \epsilon'$

- If $\epsilon = \beta$, then $\epsilon = \beta > \beta_1 \geq \epsilon'$
- If $\epsilon = \delta$, then $\epsilon = \delta > \delta_1 \geq \epsilon'$
- If $\epsilon = \alpha_1$, then $\epsilon = \alpha_1 = \overline{\alpha_1} > \delta_2 \geq \epsilon'$
Due to the simmetry of the problem, we only need to prove that $\epsilon > \epsilon' \iff d \in ext(C_{abc})$.

If $\epsilon > \epsilon'$, then $d \in ext(C_{abc})$.

If $d \in ext(C_{abc})$, then $\epsilon > \epsilon'$

- If $\epsilon = \beta$, then $\epsilon = \beta > \beta_1 \geq \epsilon'$
- If $\epsilon = \delta$, then $\epsilon = \delta > \delta_1 \geq \epsilon'$
- If $\epsilon = \alpha_1$, then $\epsilon = \alpha_1 = \overline{\alpha_1} > \delta_2 \geq \epsilon'$
- If $\epsilon = \alpha_2$, then $\epsilon = \alpha_2 = \overline{\alpha_2} > \beta_2 \geq \epsilon'$
- If $\epsilon = \gamma_1$, then $\epsilon = \gamma_1 = \overline{\gamma_1} > \delta_1 \geq \epsilon'$
- If $\epsilon = \gamma_2$, then $\epsilon = \gamma_2 = \overline{\gamma_2} > \beta_1 \geq \epsilon'$
Corollary. The Delaunay triangulation is the most equiangular among all triangulations of a given set of points.
Corollary. The Delaunay triangulation is the most equiangular among all triangulations of a given set of points.

If P does not contain four or more concyclic points, it follows from the previous lemma.
Corollary. The Delaunay triangulation is the most equiangular among all triangulations of a given set of points.

If P does not contain four or more concyclic points, it follows from the previous lemma.

If P contains four or more concyclic points, $\text{Del}(P)$ contains a polygon inscribed in a circle which can be triangulated in several ways. Nevertheless, Lemma 1 (on the geometrical locus of all the points from which a segment is seen under a given angle) guarantees that every triangulation of a polygon inscribed in a circle has the same fineness, since each edge of the polygon belongs to a triangle, and every possible triangle gives rise to the same angle.
The Delaunay triangulation is used to interpolate terrains, because it also minimizes the roughness of the terrain, in other words, the integral of the square of the L_2-norm of the terrain’s gradient.

It is important to notice that this property is independent from the data, in other words, it is independent from the values of the z-coordinates of the input points.
SOME ADDRESSES TO PLAY WITH DELAUNAY TRIANGULATIONS

http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/

http://www.dma.fi.upm.es/docencia/segundociclo/geomcomp/voronoi.html

http://www.cs.unc.edu/~snoeyink/terrain/Demo.html

AND TWO BOOKS WITH MUCH MORE INFORMATION

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu
Spatial Tessellations

F. Aurenhammer, R. Klein, D.-T. Lee
Voronoi Diagrams and Delaunay Triangulations