Median finding

Vera Sacristán
Computational Geometry
Departament de Matemàtica Aplicada II
Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya

Definition 1 The median value of a finite set of real numbers \(X = \{x_1, \ldots, x_n\}\), is the number \(m = x_j \in X\) such that:

\[
\#\{i \mid x_i < m\} < \frac{n}{2} \\
\#\{i \mid x_i > m\} \leq \frac{n}{2}
\]

The median value of such a set is its \(\frac{n}{2}\)-th statistic:

Definition 2 The \(k\)-th statistic of a finite set of real numbers \(X = \{x_1, \ldots, x_n\}\) is the number \(m = x_j \in X\) such that:

\[
\#\{i \mid x_i < m\} < k \\
\#\{i \mid x_i > m\} \leq n - k
\]

Proposition 3 The \(k\)-th statistic and, particularly, the median value of a set of \(n\) real numbers can be computed in \(O(n \log n)\) time.

The most obvious solution consists in sorting the \(n\) numbers and then finding out the value throughout the sorted numbers.

Proposition 4 The \(k\)-th statistic and, particularly, the median value of a set of \(n\) real numbers can be computed in \(O(n)\) time.

The solution algorithm follows a prune-and-search strategy:

Algorithm 1 \(\text{SELECT}(\{x_1, \ldots, x_n\}, k)\)

1. If \(n\) is small, compute the statistic by sorting the set.
2. Else, choose one \(p \in \{x_1, \ldots, x_n\}\) (how to choose it will be explained later on) and do:
 2.1 Partition:
 2.1.1 Test all \(x_i\) and classify them as smaller, equal or bigger than \(p\).
 2.2 Recursion:
 2.2.1 If the number of \(x_i < p\) is \(< k\) and the number of \(x_i > p\) is \(\leq n - k\), return \(p\).
 2.2.2 Else, if the number of \(x_i < p\) is \(\geq k\), return \(\text{SELECT}(\{x_i \mid x_i < p\}, k)\).
 2.2.3 Else, return \(\text{SELECT}(\{x_i \mid x_i > p\}, k - j)\), where \(j\) is the number of \(x_i \leq p\).

The partition phase takes \(\Theta(n)\) time. On the other hand, the recursion phase depends on the value of the chosen \(p\). A bad choice of \(p\) may lead to a \(T(n) = T(n - 1) + O(n)\) running time, and the algorithm will have complexity \(T(n) = O(n^2)\). Therefore, it is convenient to cleverly choose \(p\). The following algorithm (to be inserted in step 2 of Algorithm 1) is a convenient solution:
Algorithm 2 Choose \(p \)

1. Divide \(x_1, \ldots, x_n \) into subsets of 5 elements.
2. Compute the median value \(m_i \) of each subset \(x_{5i+1}, x_{5i+2}, x_{5i+3}, x_{5i+4}, x_{5i+5} \), by sorting.
3. Return \(\text{Select}(\{m_1, \ldots, m_r\}, \lceil r/2 \rceil) \), where \(r = \lfloor n/5 \rfloor \).

This way of computing \(p \) guarantees that at least \(1/4 \) of all \(x_i \) are smaller than \(p \), and at least another \(1/4 \) of all \(x_i \) are greater than \(p \). As a consequence, the running time of \(\text{Select} \) is

\[
T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{3n}{4}\right) + O(n) \leq T\left(\frac{19n}{20}\right) + O(n) = O(n),
\]

where the factor \(T(n/5) \) corresponds to the recursive call \(\text{Select}(\{m_1, \ldots, m_r\}, \lceil r/2 \rceil) \), the factor \(T(3n/4) \) corresponds to the recursive call \(\text{Select}(\{x_i \mid x_i < p\}, k) \) or \(\text{Select}(\{x_i \mid x_i > p\}, k-j) \), and the factor \(O(n) \) is the running time of the partition, the division into subsets of five elements, and the computation of the median value, \(m_i \), of the subsets.

Notice that the choice of making subsets of 5 elements is intended to guarantee that \(3/4 + 1/5 = 19/20 < 1 \). Therefore, any other number greater than 5 could have been suitable.

Proposition 5 The \(k \)-th statistic and, particularly, the median value of a set of \(n \) real numbers can be computed in \(O(n) \) expected time.

The algorithm is the same as Algorithm 1, but now \(p \) is randomly chosen:

Algorithm 3 Choose \(p \)

1. Randomly choose \(p \) among \(x_1, \ldots, x_n \).

This way of choosing \(p \) makes the algorithm run in \(O(n) \) expected time, let us see why. First notice that if \(p \) is randomly chosen, the probability of \(p \) matching each \(x_i \) is \(\frac{1}{n} \). When \(p = x_i \), the recursion step of the algorithm runs in \(T(i-1) \) or \(T(n-i) \) time, i.e., in \(T(\text{max}(i-1, n-i)) \) time. Therefore, the algorithm running time is:

\[
T(n) \leq an + \frac{1}{n} \sum_{i=1}^{n} T(\text{max}(i-1, n-i))
\]

\[
= an + \frac{1}{n} \sum_{i=0}^{n-1} T(\text{max}(i, n-i-1))
\]

\[
= an + 2 \frac{1}{n} \sum_{i=n/2}^{n-1} T(i)
\]

\[
\leq cn
\]

\[
= O(n)
\]

The factor \(an \) corresponds to the partition step running time. The inequality marked with an asterisk can be proved by induction. The base case is \(T(1) \leq c \), which is true if we choose \(c \geq a \). The induction step is proved as follows. Assume that \(T(i) \leq ci \) for all \(i < n \), then prove that
\[T(n) \leq cn: \]

\[
T(n) \leq an + \frac{2}{n} \sum_{i=n/2}^{n-1} T(i) \\
\leq an + \frac{2c}{n} \sum_{i=n/2}^{n-1} i \\
= an + \frac{2c}{n} \left(\frac{n}{2} + (n - 1) \right) \frac{1}{2} \left((n - 1) - \left(\frac{n}{2} - 1 \right) \right) \\
= an + \frac{2c}{n} \left(\frac{3n}{2} - 1 \right) \frac{1}{2} \frac{n}{2} \\
= an + \frac{3}{4} cn - \frac{c}{2} \\
= \left(\frac{3}{4} + \frac{a}{c} \right) cn - \frac{c}{2} \\
\leq \left(\frac{3}{4} + \frac{a}{c} \right) cn \\
\leq cn.
\]

In order for the inequality marked with an asterisk to be true, \(c \) must be chosen such that \(\frac{3}{4} + \frac{a}{c} \leq 1 \), i.e., \(c \geq 4a \).